
AD-A263 096

S DTICS ELECTE
APRI 91993 U

AFIT/EN/TR93-01

Air Force Institute or Technology

Modelling Temporal Abductive Explanation

Eugene Santos Jr.

March 11, 1993

Approved Cor public release; distribution unlimited

O 93-08080

93 4 16 143 EiIIUiM



Accesiwl for

NTIS CRA&W
UTIC TAB E
Uion r-ou nced 03

By
Dst ?t" b~Ason I

Avdulatbltty Codes

Modelling Temporal Abductive Explanation 1

Eugene Santos Jr.
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-7765

esantos@afit.af.mil

March i1, 1993

bIoQUALM I7 NPECTM

KEYWORDS: probabilistic reasoning, constraint satisfaction, linear program-
ming, temporal reasoning, abductive explanation

Abstract
Abductive reasoning and temporal reasoning have for the most pat

remained separate fields of study. Models for either tasks have made
overly-simplistic assumptions about the other in order to concentrate on
small highly-domain specific tasks. For example, existing abductive mod-
els have precluded any temporal information in their formulations whereas
temporal models do not address abduction being only concerned with con-
sistency issues. We present a unified approach to merging abductive and
temporal reasoning. This approach properly subsumes existing abductive
models as well as temporal ones and provides a precise framework for ex-
planatory reasoning. Furthermore, effective algorithms for this new model
are developed based on linear programming techniques.

1 Introduction

The need for abductive reasoning (explanation) has been demonstrated in vari-
ous Al domains such as natural language understanding, medical diagnosis and
planning. Formally defined as "the process of identifying the best set of assump-
tions to prove a given observation", several models have been proposed such as
belief revision in Bayesian networks 110], cost-based abduction [8, 4) and set-
covering theory [11]. Intuitively, these models attempt to provide a mechanism



for reasoning the "causes from effects'. Since there are typically an enorirtous
number of causes for a given effect, the various models lay down a fraznework
for deciding which causes are more likely to have occurred.

The notions of cause and effect implicitly require a temporal elemnent Yet
the existing models fail to address this. Unmistakably, the need for model-
ing temporal relationships has been identifed in various At applications espe-
cially those we mentioned earlier for abductive reasoning, Current abduction
techniques assume a very loose temporal ordering in it's explanations. It only
requires that effects should not precede causes. Hence, they are incapable of
modeling more specific temporal information such as "cause A cannot precede
effect B by more than 5 minutes".

On the other side of the coin, several formulations have been proposed for
tempoail r-a'soning such as Allen's interval algebra [1], point algebra (21] and
temporal constraint networks [61 Each of these models provide a rich framework
for modeling temporal relationships. However, they have been ufsed only for
proving the consistency of a given set of temporal events. The issue of abduction
is not addressed.

In this paper, we provide a unified approach to abduction and temporal
reasoning. We were able to

"* develop a formal model for representing and reasoning with both causal
and temporal information permitting the rigorous analysis of the proper-
ties in this approach;

", demonstrate the natural subsumption of existing temporal and abductive
models by our approach.

Thus, this provides us with a good idea of the representational power of our
approach. Furthermore, we were also able to

* develop effective algorithms for finding the best temporally consistent ex-
planation based on linear programming techniques.

Earlier work on solving abduction problems through integer linear programming
were shown to be quite successful and efficient [14, 13, 3) providing us with a
promising launching point for the algorithmic design at hand.

We begin our presentation with a brief review of a few of the existing abduc-
tive reasoning models in Section 2 and temporal ones in Section 3. In Section 4,
we describe the formalisms of our new unified model. Finally, we present an
algorithm based on integer linear programming to find the best explanation for
our model in Section 5.

2 Abductive Reasoning

As we mentioned earlier, there are typically a large number of explanations
(causes) to prove a given observation (effects). Unfortunately, numbered among
these are explanations which we may consider to be "far-fetched". For example,
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Fic. 2.1. A cost-based abduction graph.

we could conceivably explain "The dog is barking" with "Because the fire-
hydrant bit it.". All the models for abduction are centered around defining
a mechanism for ordering all the available explanations. In this way, it then
becomes possible to identify what the "best" explanations are

We begin by looking at the model of cost-based abduction developed by Char-
niak and Shimony [4]. Knowledge is represented in the form of a directed acyclic
graph where nodes denote propositions and the arcs between the nodes repre-
sent direct logical relationships. In particular, the nodes are marked as either
AND-nodes or OR-nodes. If a proposition is an AND-node, then it's truth value is
the conjunction of the truth values of all it's immediate parents. Similarly, this
is the case for an OR-node. Hypothesis nodes are nodes which h;ove no parents.
Evidence comes in the form of indicating that a certain subset of propositions
(nodes) are true. The goal then is to find a truth assignment to the graphi which
is consistent to the given evidence by assuming the truth values of the vari-
ous hypothesis nodes. Since there maybe numerous combinations of hypothesis
node assignments to prove the evidence, a cost is attached to each hypothesis.
This cost is used to reflect how likely it is to a.sume a certain hypothesis node,
A cost can then be defined for an explanation as the sum of the costs incurred
by the hypothesis nodes. The best explanation will be the explanation with
minimal cost. Consider the following scenario: "John comes home from work
and finds that the house is dark and quiet. He concludes that no one is home.".
Figure 2.1 represents our knowledge base. Given our observation that the house
is dark and quiet, we find that the minimal cost explanation is that no one is
home.

Another model for abduction is belief revision in Bayestan uetworks (10].

3



Strictly founded in probability theory, this model also provides a nice graphical
representation of the knowledge base. Again, we have a directed aicyclic graph.
Each node in this graph represents some random variable while arcs between
the nodes denote direct conditional dependencies between the random variables,
By making various instantiations to the random variables, we can model differ-
ent states of the world. The conditional dependencies laid out in the network
allows us to quickly compute the joint probability of a given instantiation. The
probabilities can then be used to provide us with an ordering on the various
world states (scenarios). The best explanation is the most probable one.

Both of these models provide a nice visualization of the knowledge baae
with their graphical structures. However, we feel that the cost-based approach
may be much more intuitive to work with than belief revision. We can easily
map conventional rule-based information into the cost-based network- Further-
more, the costs can be semantically derived as negative log probabihties on
the hypothesis being true or false. In this way, Charniak and Shimony show
that cost-based abduction subsumes the probabilistic model of belief revision in
Bayesian networks j18] and vice versa.

As we can see, neither of these two models provides for a temporal component
in their representation scheme. Other models of abduction include coherence
theory [20], parsimonious covering theory [11] and weighted abduction [8, 19].

3 Temporal Reasoning
A major part of temporal reasoning has involved determining whether there is
a consistent temporal ordering of a given set of events. The various events are
temporally constrained between one another. For example, "The car started
after Mary turned the ignition k-y". We have two events, "the car starting"
and "the ignition key being turned" where the first event must occur "after' the
second. Various temporal representations have been proposed to aid in modeling
these relationships and to provide a mechanism for consistency checking.

One of the more notable models we consider is Allen's interval algebra [1].
Basically, there is a time interval in which each event occurs denoted by [a,b]
where a is the starting time point and b is the termination point. Temporal re-
lationships between events are expressed as relations between the corresponding
intervals. He identifies 13 possible relations between intervals (See Figure 3,1).
In the above example, we would have the relation

S> K

where S is the starting event and K is the turning event.
Allen's formulation allows for a disjunction of relations between any two

events. This can be represented in a graphical form where nodes represent events
and the arcs are labeled with a disjunction of relations. The goal is to determine
whether there exists an interval assignment to all the events that satisfy the
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FIG. 3.1. Allen's thirteen possible relations.

disjunctive relations. If such a solution exists, then the given knowledge base is
consistent.

An alternative temporal model is temporal constraint networks [6). Allen's
interval algebra is incapable of dealing with metric information such as tem-
poral distance. For example, "Tony fell asleep 5 minutes into class" would be
constrained as T - C = 5 where T is the time point (We are not dealing with
intervals here.) that Tony fell asleep and C is when the class started. Each
event is associated with a particular time point with which it occurs. A time
point may be the beginning or ending of some event, as well as some neutral
point, of time such as 2:30pm.

Each node in a temporal constraint network represents some event. The
arcs between the nodes are labeled with a disjunction of temporal distance
constraints of the form

(a, : _Xi- Xi :_bl)v''- v(a, < Xj -Xi :_b,)

where the ais and bis are real numbers or +/- infinity. Hence, the network
is consistent if there exists an assignment to the time points which satisfy the
constraints.

Allen's interval algebra and the temporal constraint networks both have
differing representational capabilities. As we pointed out, the interval algebra
cannot model temporal distance. However, it can be shown that the temporal
constraint network does not subsume the interval algebra [6].
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Other models for temporal reasoning iclude point algebras [21], BTK 12].
temporal logic [5], semi-intervals [7] and weak representations of interval alge-
bras [9].

4 Temporal Abduction

We now formalize our unified model for abduction and temporal reasoning.
NOTATION, R denotes the set of real numbers. [a, b] such that a, b E R and a < b
denotes a closed interval on the .eal number line. Let Q denote the set of all
intervals on the real numbers.1

If we wished to use time points as opposed to intervals, we can simply rep-
resent these points as intervals of the form [a, a].

DEFINITION 4.1. A temporal relation is a relation on Q.

Allen's thirteen relations are temporal relations as well as the constraints
(temporal distance, etc. ) in temporal constraint networks.

DEFINITION 4.2. A set of R1 of temporal relaitons is said to be complete if and
only if given any two intervals Q, and Q2 from Q, there exists a relation R in
r such that QIRQ2 .

PROPOSITION 4.1. Allen's thirteen relations form a complete set.

NOTATION. Given a relation R, R' denotes the transitive closure of relation R
and R-I denotes the inverse of R.

4 denotes the empty set.

DEFINITION 4.3. A set of r of temporal relations is said to be monotonic if and
only if R = U1,-AR and -A n (K)-I = €.

PROPOSITION 4.2. The subset of relations {<,o,s, fi,di, m) from the ornginal
thirteen is a monotonic set.

Intuitively, a monotonic set can be said to "point in only one direction." This
can be used to provide a straightforward approach to modelling cause and effect
in terms of the directionality of the relations. Thus, aRb can be unambiguously
interpreted as a causes b.

DEFINITION 4.4. A temporal abduction problem (abbrev. TAP) is a 5-tuple
W = (G, r, 1, c, o) where

* G = (V, E) is a graph with nodes V representing propositions or events
and edges E denoting causal relationships between the nodes. We call G
the causal graph of W.

* r is a mapping from V to the labels (AND, OR). If r(q) = AND, then q is
also called an AND-node, etc.

'Our approach can be easily extended to open intervals, semi-open intervals and extended

intervals of the form [a, oo), etc.
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"* I is a mapping from E to some non-empty collection of temporal relations
I denotes the temporal relationships between the nodes.

"* c is a mapping from V x Itrue, false} x W x W to W called the cost function
for W.

"* o is a subset of V x W U {X) x R U fX} where X is a specisal symbol
representing 'don't care". o is called the observations for W.

The causal graph represents the information for our abductive proofs. It
is analogous to tile graphs found in both cost-based abduction and Bayesian
networks. Previously, in the two former models, an event could be proved by
proving the events which are the immediate parents. This continues recursively
until hypothesis nodes are reached. We augment this by further requiring certain
temporal constraints to be satisfied before a parent can participate in a proof
The labels on the edges explicitly represent the temporal information-
NOTATION. For each node q in G = (V,E), we define D, = (p E Vj(p,q) E E)
called the parents of q. Conversely, we define D = {p E VI(q,p) E E} called
the children of q.

DErINITION 4.5. Given a TAP W = (G,r,l,c,o) where G = (V,E), we define an
assignment to W to be a 3-tuple s = (G'. 1', 1) where

"* G' = (V',E') is a subgraph of C called the solution graph.
"* l' ts a mapping from E' to some set of temporal relations such that for

each e E E', l'(e) E l(e).
* I is a mapping from V to some closed interval Ia, b) where a < b.
Intuitively, q E V' if and only if q has been assigned true. Furthermore, 1(q)

represents the time interval in which q is true.
NOTATION. Given an interval mapping I(q) = [a,b], we define two projectior
functions I,(q) = a and 12(q) = 6.
DEFINITION 4.6. An assignment s = (G',l', I) for W = (G,r,l,c,o) is said to be
causally sound if and only if the following conditions hold:

"• q E V' if there exists some (q,a, b) E o.
"* For each node q E V such that r(q) = AND, if q E V', then D9 C V' and

(p,q) EL' for allpE Dq.
"* For each node q E V such that r(q) = OR, if q E V', then D. n V'•

and (p,q) E E' for some p E Dq n V'.
Furthermore, if

* G' is acyclic.
then s is said to bc strong causally sound.

Causal soundness simply guarantees that the propositions are directly sup-
ported/explained according to our causal information. The extra restriction of
strong causal soundness guarantees an additional level support which we will
return to later.



DEF'INITION 4.7. An assiqnment s = (G'. I',I) for W = (G,r, I, c,o) is said to be
temporally consistent if and only if

"* For each pair of nodes p, q E V' such that e = (p,q) E E', J(p)Rl(q) where
R = 1'(e) is the temporal relation.

"* If (q, a, b) E o, then the following conditions hold.,
- If a 0 X, then I,(q) = a.
- If 6 $ X, then 12(q) = b.

Simply put, an assignment is temporally consistent if all the temporal con-
straints are satisfied as well as any initial conditions imposed by the observation
information,

DEFINITION 4.8. An assignment s for W is said to be an (strong) explanation if
and only if s is (strong) causally sound and temporally consistent.

Now, since we may have many possible explanations for a given observation,
we impose an ordering in order to determine the best one.

DEFINITION 4.9. Given an assignment j = (G',l',I) for W = (G,r,lc,o), we
define the cost of s as follows

G(s) = F c(qtrue,11 (q),12(q)) + Z c(q,false, 11 (q),1 2 (q)). (1)
qEV) qEV-V'

DEFINITION 4.10. The (strong) erplanation s for W which minimizes G(s) is
said to the best (strong) explanation for W.

This completes our formulation of temporal abductive problems. As we can
easily see, this approach merges both types of reasoning into a single theoretical
framework. Let us now consider two restricted classes of TAP which provide
additional properties. We denote these two classes by M I and M 2.

DEFINITION 4.11. A TAP W4' = (G,r,l,c,o) belongs in mi if and only if G is
acyclic.

With an acyclic causal graph, we can prove the following theorem:

THEOREM 4.3. Given a TAP K' in MI, if s is a causally sound assignment for
14, then s is also strong causally sound.

(Proofs can be found in the Appendix.)
For the second class, we define

DEFINITION 4.12. A TAP W = (G,r,l,c,o) belongs in M:! if and only If the range
of I is a monotonic collection of temporal relations.

THEOREM 4.4. Given a TAP W in M2, if s is a causally sound as well as a
temporally consistent assignment for W, then s is also strong causally sound.

The important property shared between these two classes is that. we do
not have to explicitly check for acyclicity in the solution graph given that the



remaining conditions are satisfied. Cyclicity is a problem for abductive models
because of the existence of "anomaious" explanations which are not properly
ruled out. For example, say we have the rules that A implies B and B implies
A. If we have the observation A, then we can use B to explain A. Now, we
must explain B. Well, A is already true so we can use it to explain B and ad
nauseum.

2

One final note in our TAP formulation: Consider the following causal infor-
mation

A and B can be used to prove C if either one of A or B precedes C.
Suppose that we have arcs from A to C and B to C such that both these
arcs have two temporal labels "<" and "=". There are 4 possible labeling
combinations for our two arcs. Unfortunately, we require at least one arc labeled
"<", thus ruling out the combination with two "-"s. Although our present
model does not directly represent this sort of temporal constraint, we can show
that it can be appropriately represented by a slight modification.

We have completed our formulation of temporal abduction. We now show
that existing abductive a&s well as temporal reasoning models are subsumed
within our new framework.

For Allen's interval algebra and temporal constraint networks, the goal is to
determine whether there exists a feasible solution. We can model this as a TAP
problem by taking the temporal graphs and labeling the nodes as AND-nodes.

THEonEm 4.5. Given the TAP we constructed above, an assignment s which
is causally sound and temporally consistent is a feasible solution for the given
temporal reasoning problem.

For abduction, we can also prove the following theorem:

THEOREM 4.6. The temporal abduction problem subsumes cost-based abduction
[4], generalized cost-based abduction [16] and belief revision in Bayesian net-
works [10J.

Since belief revision in Bayesian networks can be transformed into cost-
based abduction [18], all we need to consider is the subsumption of the cost-
based approach. In the original approach, no temporal ordering is required
of given nodes. We can rephrase this as allowing for any temporal ordering
of the nodes. All we need to do is label the edges of the cost-based problem
with all the temporal relations available. Hence, labeling with a complete set of
temporal relations is sufficient. We can prove that this will provide us with the
best-explanation for the original problem. (Actually, we could have identically
labeled each edge in the old problem with a single temporal relation and achieve
the same results. However, this seems less semantically appealing.) Hence, we
have actually transformed our problem in to an M I problem. Generalized cost-
based abduction is proved similarly.

2For a detailed discussion on cyclicity in abduction, see [116].
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5 Integer Linear Programming

In this paper, we have developed an effective approach for finding the best ex-
planation in a TAP using integer linear programming [17]. Previous work on
reducing abduction problems to integer linear programming were quite success-
ful and efficient at determining the best one [15, 13, 3].

The transformation involves mapping the notion of propositional truth as-
signments into some multi-dimensional space which we will denote by R". A
subspace of Rn will represent "valid" truth assignments where valid includes
things such as temporal consistency and causal soundness. In particular, we
are interested in transforming it into a polyhedral convex set.3 Such a set can
be described by a collection of linear inequalities. As it turns out, these in-
equalities will intuitively correspond to the restrictions/constraints required in
making valid truth assig ,ments of the propositions. Finally, we would like to
define a linear energy function such that by minimizing it over the convex set,
the resulting answer will be the best explanation after we make the appropri-
ate inverse mapping. Thus, we would have the makings of a linear constraint
satisfaction problem.

Once the mapping is complete, we can then use highly efficient tools and
techniques from Operations Research to solve our integer linear program. Such
tools include the Simplez method and Karmarkar's projective scaling algorithm
augmented with a branch and bound approach 117). These teLhniques have a
long history in Operations Research and are well understood.

We begin our transformation to integer linear programming as follows: As-
sume that the various temporal relations can be represented by a collection of
linear inequalities, i.e., given temporal relation R, l(q1 )RJ(q 2 ) if and only if

dx,l a 1 + dl, 2b 1 + dI. 3a, + d1 4 b2  < g1

dk,lai + dA, 2b, + dk,3a 2 + dk, 4b2  .9k

where I(q9) = [al,bl], I(q2) = [a2 ,b2] and dij,gi are some constants. For
example, consider Allen's "<" relation. We can represent it with the following
single inequality:

a2 -b < 0-6

where 6 is some arbitrarily small but positive value.
Finally. assume that our cost-function is a linear function.
We can now proceed with transforming the abductive and temporal con-

straints into linear inequalities. Like values in boolean circuits, we can use
numerical assignments instead of true or false. In general, we use I for true
and 0 for false. By taking this viewpoint, we can now consider the internal

-3"Polyhedral" refers to the fact that the boundaries of the subspace are composed of hyper-
planes.
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consistency as some form of mathematical formulae to be satisfied where each
node is actually a variable in the equation. Our purpose is now to show how
these equations can be derived and then prove that they guarantee the internal
consistency required.

We begin our derivation with the simplest of the requirements. Let q be
an evidence node in our TAP. Associate the variable r. with q. Since q is an
evidence node, any explanation for q must assign q to true. This can be modeled
by the equation

Z = 1. (2)

Next, let q be an AND-node with parents Dq. We have the following: q is true
iff p is true for all nodes p in Dq. Symmetrically, q is false iff there exists a p
in D, such that p is false. We can accomplish this with the following equations:

Xq :_ xp for each p E Dq (3)

which guarantees that
1. q being true forces all p in D. to be true, and
2. some p in D. being false forces q to be false.

Note that at this time we are assuming that our variables may only take values
of 0 or I although there is no upper or lower bound on the results of evaluating
either side of the equation.

Finally, the OR-node can be modeled with the following equations:

Z mpgýt > q (4)
pED,

Mpq < zr for each p E Dg (5)

where q is an OR-node with parents D, and in. is a special marker-node indi-
cating that p is used to explain q.4

We now make precise how we can transform 0-1 assignments on the real
variables z. and mpq into solution graphs for the TAP and vice versa.

Let f be a 0-1 assignment to the real variables. We construct a solution
graph G'[f] = (V', E') for our TAP as follows:

Sp E V' if and only if xp = 1.
* For each p,q E V such that r(q) = AND and p E Dq, (p,q) E E' if and

only if xp = Zq = 1.
* For each p, q E V such that r(q) = OR and p E D9, (p, q) E E' if and only

if mpg = 1.
Conversel-', we can construct a 0-1 assignment from a solution graph as follows:

* xp 1 if and only ifpE V'.
4AND-nodes do not require marker-nodes since all the parents of such a node inust be used

in any explanation.
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"* For each pq E V' such that r(q) = ANU and p E DB, r, = zx = I if atid
only if (p, q) E E.

"* For each p,q E VW such that r(q) = OR and p E Dt, Imr = I if and c.dy
if(p,q) E P

With these transformations we can now prove the following theorem.

THEoagp~ 5.1, Any 0-1 assignment I satsfies (2) - (5) if and only if G('if
satisfies the causal soundness properties in Definition 44.6

Together, these equations will guarantee that any feasible assignment will be
causally sound which is the first step towards finding the best explanation Next,
we now define the constraints necessary for guaranteeing temporal consistency

PROPOSITION 5.2 Gtven a TAP W = (G,r,l,co) where C = (!',E), the number
of variables and constraints used to yuarantre causal soundness is

"• Variables
IVI + IDI < IV + IEJ,

q E V
r(q) = OR

"* Constraints

iol+ + ID,1 * (I + IDi) !<S oi + IV! + IEj
qEV qEV

r(q) = AND r(q) OR

When a node p is used to explain node q, then one of the temporal relationw
specified on the edge from p to q must be satisfied Let {Rj. R,. - R,.) be tlic
relations from p to q. Associate a real variable zR, to each relation R, indicatiiig
that the relation is satisfied. First, we construct the following constraint

"* If r(q) = AND. construct

ny Z11, > -(2 - zp - z,)K• •

where IN is some arbitrarily large positive constant
"• If r(q) = OR, construct

XR•, - - .)K. (7)

"* For each (q. a, 6) E o such that a X,

a = a. (8)

12



* For each (q, a, b) E o such that b $ X,

bq9 =. (9)

Next, for each relation, augment the associated linear inequalities as follows:
Assume, that for relation A. we have

dila, + dI, 2bp +dI, 3 a, +dl, 4bf 4  gi

dh,la,, + dk, 2bp + dh. 3 a, + d, 4 bj < 9k

We augment these and include them in our constraints as

dj,iap + d1 ,2b, + di,3a, + dl, 4bf < 91 + (1 - Z-,)K (10)

dk,la. + dk, 2bp + dk,sa1 + dk, 4b9  < 9k + (1 - xR,)J

Now, we demonstrate how we can completely transform 0-1 assignments on
the real variables zp, rnpq, zR, ap and bp into TAP solutions!'

Let f be an assignment to the real variables. We construct G' = (V'. E'),
i'(e) and I(p) as follows:

"* pEV'ifandonlyifzp=l.
"* For each p,q E V such that r(q) = AND and p E Df, (p,q) E E' if and

only if zp = = 1.
"* For each p, q E V such that r(q) = oR and p E DI, (p, q) E E' if and only

if Mpq = 1.
"* Let {R 1,. . } be the relations on edge e E E'. Arbitrarily choose one

R/, if any, such that zR, = I in 1. Set l'(e) = R?.

I 1l(q) = a•.
• l2(q) = b9.

Note that we may have more than one transformation. However, this will have
no effect on our results since we are mainly interested in determining whether
a feasible solution exists.

Conversely, we can uniquely construct f from the temporal solution as fol-
lows:

"* XP=l if and only ifpE V'.
"* For each p,q E V' such that r(q) = AND and p E DI, zp =z = I if and

only if (p, q) E E'.
" For each p,q E V' such that r(q) = OR and p E DI, ori, I if and only

if (p, q) E E'.
"* zR = I if and only if I'(e) = R.
* at =l1(q).

Sap and bp are in general not asigned to 0-1. In fact, they can be asigned to anything in

13



*b = '2(q).
With these transformations, we can now prove the following theorem:

THEOREM 5.3. An assignment s is temporally consistent if and only if f satisfies
(6)- (10).

PROPOSITION 5.4. Given a TAP W = (G, r, 1,c, o) where G = (V, E), the number
of variables and constraints used to guarantee temporal consistency is

"* Variables
21VI + Il(e)i-

eEE

"* Constraints
(I + M)IEI

where M is the largest number of constraints used to model a temporal
relation.

We have now shown how our constraints can guarantee both causal sound-
ness and temporal consistency. Hence, the assignments are valid explanations.
To guarantee that we have a strong explanation, we must satisfy the acyclicity
condition for strong causal soundness.

THEoREM 5.5. Given a TAP W in either MI or M2, an assignment s for W is
a strong explanation if and only if s satisfies (2) - (5) and (6) - (10).

Hence, we do not need to explicitly check for cyclicity in our assignment if our
problem belongs in either class MI or M2. For our more general TAP problem,
it turns out we can guarantee the acyclicity condition through additional linear
constraints. This can be achieved in a similar fashion as the approach described
in [16] for straight abductive reasoning.

To complete our transformation to integer linear programming, all we need to
do is to define an objective function to minimize. We can take the cost-function
and directly use it as our objective.

THEOREM 5.6. Given a TAP W, an assignment s for W is the best explanation
for W if and only if s satisfies (2) - (5) and (6) - (10) and minimizes the given
objective function.

COROLLARY 5.7. Given a TAP W in either MI or M2, an assignment s for W1
is the best strong explanation for W if and only if s satisfies (2) - (5) and (6) -
(10) and minimizes the given objective function.

6 Conclusions

Development of abductive and temporal models of reasoning have for the most
part been independent of one another. Work has mainly concentrated on small
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highly-domain specific problems allowing such a segregation. Previous abduc-
tive models fail to address temporal issues and assume a crude notion of time.
Temporal models have provided a full representation of time but do not account
for explanatory information.

We have developed a unified framework for temporal abductive reasoning.
This model formally bridges the gap between abductive and temporal reasoning
by merging the two areas. We have precisely defined the notion and mechanisms
for explanatory reasoning taking into full account any temporal information. In
particular, we have also shown that existing models of abduction and temporal
reasoning such as cost-based abduction, belief revision, Allen's interval algebra
and temporal constraint networks are subsumed by our model. It was shown
that two restricted classes of our model, M, and M2, are sufficient for sub-
sumption and provide additional properties which serve to simplify our search
for the best explanation.

We can transform our search for the best explanation into an integer linear
programming problem allowing us to use the highly efficient tools and techniques
such as Simplex from Operations Research. With this, the best explanation can
be found and precisely described temporally, that is, precise values are provided
for the start and end of any temporal interval.

This approach merges three fields of study together, namely, abductive rea-
soning, temporal reasoning and linear programming. The potential gains seem
enormous in terms of representational power, reasoning capabilities, etc. One
of the areas currently under study involve applying probabilistic semantics to
our costs [12].
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A Proofs

THEOREM 4.3. Given a TAP W tIn M1, ifs Is a causally sound assignment for

W, then s is also strong causally sound.

Proof. From Definition 4.6, s = (G', I', I) is strong causally sound if it is
causally sound and G' is acyclic. Given that W = (G, r,l, c, o) is in M 1, G is
acyclic from Definition 4.11. Since G' is a subgraph of G, then G' is also acyclic.
Thus, s is strong causally sound. 0

THEOREM 4.4. Given a TAP W in M2, if s is a causally sound as well as
temporally consistent assignment for W, then 8 is also strong causally sound.

Proof. Given that W = (G,r,i,c,o) is in M2, let s = (G',l',I) be a causally
sound and temporally consistent assignment for W. Assume that G' is cyclic,
that is, G' contains a directed cycle. Let G = (V, E) and G' = (V', E').

Without loss of generality, assume that {AI,A 2 ,...,A.} E V' such that
(A 5,A,+j) E E' for i = 1 .... n- 1 and (An,Ai) E E'. These nodes form our
cycle in G'. Since (A,, Aj+1 ) E E', I(Aj)RI(A,+1 ) where R = 1'((Ai, Aj+,)).

Let /, 1 = l'((A,,A,+,)) and •. 1 = 1'((A.,,A 1 )). Let

WR= P.n,I U R1,2 U...- U Pn- 1,n-

By taking the transitive closure of W, we know that

A,71-An

and
A,,NcAI .

Hence, r f (n ' • •.
However, since W is in M2, the set of all temporal relations found in W is

monotonic. Contradiction.
Therefore, G' is acyclic which implies that s is strong causally sound. 0
Before we can properly prove Theorem 4.5, we provide a formulation for

Allen's interval algebra and temporal constraint networks.

DEFLNITION A.]. An interval algebra problems (abbrev. lAP) is an ordered pair
IA = (U, k) where

U = (V, E) is an undirected graph where V is a set of events and E
represents direct temporal relationships between these events.

* k is a mapping from E to some subset of Allen's thirteen temporal rela-
tions. In particular, this is our disjunctive labeling on the arcs.

DEFINITioN A.2. Given an 1AP ]A = (U, k) where U = (V, E), an assignment

s1A is an ordered pair (J, k') where
"* J maps each node in V to some closed interval.
". V() E k(e) for all e E E.
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Furthermore, we call 81A a solution to IA if and only if J(p)RJ(q) where R =
k'((p, q)) for all (p, q) E E.

DEFINITION A.3. A temporal constraint network (abbrev. TCN) is an ordered
pair T = (G, t) where

"* G = (V, E) is a directed graph where V is a set of events and E represents
direct temporal relationships between these events.

"* t is a mapping from E to some collection of closed intervals representing
the disjunctive inequalities between the events.

DEFINITION A.4. Given a TCNT = (U,t) where U = (VE), an assignment ST
is an ordered pair (P, t') where

"* P map each node in V to some real number.
"* t'(e) E t(e) for all e E E.

Furthermore, we call ST a solution to T if and only if For all (p, q) E E, a <
P(q) - P(p) <_ b where t'((p, q)) = [a, b].

THEOREM 4.5. Given the TAP we constructed above, an assignment s which
is causally sound and temporally consistent is a feasible solution for the given
temporal reasoning problem.

Proof. We begin with Allen's interval algebra problem. Let IA = (U, k) be
a IAP where U = (V, E). We construct a TAP W = (G, r, 1, c, o) as follows:

G C = (V, EG) is a directed graph constructed from U by arbitrarily choosing
an arc direction for each edge.

* r(q) = AND for all q E V.
• l(e) = k(e) for all e E E.
* C = 0.

* (q, X, X) E o for all q E V.
Let S1A = (J, k') be a solution to IA. Construct an assignment s = (G', 1', 1)

for 14' where G' = (V', E') as follows:
7 G'=G.

* l'(ec) = k'(e) for each eG E E' where e is the corresponding undirected
arc for e in U.

* l(q) = J(q) for all q E V.
Now, we the following conditions on s hold:

"* q E W" if there exists some (q, a, b) E o.
Clearly, this follows from our construction.

"• For each node q E V such that q E V', if r(q) = AND, then Dq C V' and
(p, q) E E' for all p E Dq.
From our construction of W, all nodes are AND-nodes. Since G' = G, this
follows straightforwardly.

Thus, s is causally sound. Furthermore, we are guaranteed that for each pair of
nodes p,q E V' such that e = (p,q) E E', I(p)RJ(q) where R = 1'(c). Therefore,
s is also temporally consistent.
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Now, we must prove the converse. Let a = (G', 1', 1) where G' = (V', E') be
an explanation for W. Construct S1A = (J,k') as follows:

"* J(q) = I(q) for all q E V.
"* k'(e) = 1'(eG) for all e E E where eG is the directed edge corresponding

to e in G.
From our construction, we can readily prove that seA is a solution to IA.

Hence, we can find a solution for IA by solving for some explanation in W.
Next, we must prove subsumption for temporal constraint networks. The

construction is similar to Allen's interval algebra above except that we must
map the time points used in TCNs to closed intervals of the form [a, a].

Let T = (G,t) where G = (V,E) be a TCN. Construct a TAP W =
(0, r, 1, c, o) as follows:

"* r(q) = AND for all q E V.
"* I(e) will be the corresponding set of relations on closed intervals trans-

formed from the disjunctive inequalities on the original TCN edges.
c = 0.

* (q,X,X) EoforallqEV.
Our proof that that all solutions for T are solutions for W an vice versa is
similar in nature to the above proof for IAPS. 0

THEOREM 5.1. Any 0-1 assignment f satisfies (2) (5) if and only if G'[f]
satisfies the causal soundness properties in Definition 4.6.

Proof. Let f satisfy (2) - (5). We now prove that the solution graph
G' = (V',E') constructed from f satisfies the causal soundness properties in
Definition 4.6.
Case 1. q E V' if there exists some (q, a, b) E o.

Since (q,a,b) E o, this implies from (2) that Zq = 1. Hence q E V' from
our construction.

Case 2. For each node q E V such that r(q) = AND, if q E VW, then D. g VI
and (p, q) E E' for all p E Dq.
Assume that q E V'. This implies that zq = 1. From (3), xp = 1 for all
P E Dq. From our construction, we know that Dq C V'. Furthermore,
(p, q) E E' for all p E Dq.

Case 3. For each node q E V such that r(q) = OR, if q E V', then D, n V' I,
and (p, q) E E' for some p E D, n V'.
Assume that q E V'. This implies that z, = 1. From (4), there exists
some Mq = 1 where p E D.. From our construction, (p,q) E E' which
further implies that p E V'. Hence, D, n V'I- and (p, q) E E' for some
P E D, n V".

Therefore, G' is causally sound.
For the converse, let C' be causally sound. Assume that f constructed from

G' does not satisfy (2) - (5). This implies that one of the following constraints
are violated:
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Case 1. (2) (q,a, b) E o, x = 1.
Since (q,a,b) E o, q E V". From our construction, xq = 1. Hence, no
violation.

Case 2. (3) : r(q) = AND, zx _< xp for all p E D1.
If this constraint is violated, this implies that z9 = I and x. = 0 for some
p E Dt. From our construction, q E V' but p is not in V'. However, since
G' is causally sound, D, C_ V'. Contradiction.

Case 3. (4) : r(q) = OR,

E Mpg xt.
pEDj

If this constraint is violated, this implies that zx = 1 and rmpe = 0 for
all p E DL. From our construction, q E V' but (p, q) is not in E' for all
p E D,. Contradiction.

Case 4. (5) : r(q) = OR, mp,, < zx for all p E De•
If this constraint is violated, this implies that zx = 0 and rpe = 1 for
some p E D4. From our construction, p is not in V' and (p,q) E E'.
Contradiction.

Therefore, I satisfies all the constraints. 0

THEOREM 5.3. An assignment s is temporally consistent if and only if f satisfies
(6). (10).

Proof. Let s be temporally consistent. Assume J constructed from s does
not satisfy (6) - (10). This implies that at least one of the constraints has been
violated.

Case 1. (6) : r(q) = AND, p E Dq and

22

ZZR, Ž! I-(2 -xp - q)K<.

This constraint is violated when x, = :q = I and ZR, = 0 for all i. From
our construction, e = (p, q) E E'. However, this implies that 1'(e) = R for
some R on e. Thus, zR = 1. Contradiction.

Case 2. (7) : r(q) = OR, p E DI and

This constraint is violated when tn., = I and ZR, = 0 for all i. From
our construction e = (p, q) E E'. However, this implies that 1'(e) = R for
some R on e. Thus, zR = L Contradiction.

Case 3. (8) (q,a,b) E o, a 0 X and

at = a.

21



This constraint is violated when a, ? a. From our construction, this
implies that 1l(q) : a. Contradiction.

Case 4. (9) : (q,a,b) E o, b 9 X and

b i.

This constraint is violated when b4 4 b. From our construction, this
implies that 12(q) :i b. Contradiction.

Case 5. (10) : Set of temporal linear inequalities.
This constraint is violated when xf, = I and a,, bp, a, and b, are set
accordingly. From our construction, this implies that (I(p), I(q)) is not in
R,. However, l'(e) = R, and I(p)XIl(q). Contradiction.

Therefore, f satisfies the constraints.
Now, let f satisfy the constraints and construct s from 1. We prove that s

is temporally consistent as follows:
Case 1. If(q,a,b) Eoand ao X, then II(q) = a.

Since (q,a,b) E o and a 0 X, (8) implies c, = a. From our construction,

11(q) = aq.
Case 2. If (q, a, b) E o and b t- X, then 12 (q) - b.

Since (q,a,b) E o and b : X, (9) implies bf = 6. From our construction,

12(q) = b,.
Case 3. For each pair of nodes p, q E V' such that e = (p, q) E E', I(p)RI(q)

where R = P(e).
Let e = (p, q) E E'. This implies that zp = r, = I from our construction.
If r(q) = OR, this further implies that mrq = 1. Either (6) or (7) implies
that for some R E 1(e), ZR = 1. Consequently, the set of inequalities

associated with zR in (10) must also be satisfied for a., b., a, and b6.
(10) imply that (ap,bp)R(a,,b,). From our construction, l'(e) = R and
1(p)R1(q).

Therefore, s is temporally consistent. D

THEOREM 5.5. Given a TAP W'V in either M, or M2, an assignment s for V4 is
aI strong explanation if and only ifs satisfies (2) - (5) and (6) - (10).

Proof. Follows from Theorems 4.3, 4.4, 5.1 and 5.3. 0

THEOREM 5.6. Given a TAP W, an assignment s for 14W is the best crplanation
for 14 if and only ifs satisfies (2) - (5) and (6) - (10) and minimizes the given
objective function.

Proof. Follows from Definitions 4.9 and 4.10 and Theorem 5.5. 0
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